TR/TES/M-II/V(B)/13

MECHANICAL ENGINEERING

Paper: II

Grade: V(B)

Full Marks - 200

Time - Three hours

The figures in the margin indicate full marks for the questions.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

15×6=90

Answer all questions.

Each question carries 6 (six) marks.

- 1. (a) Explain liquid-suction heat exchanger.
 - (b) Why is this incorporated in vapour compression refrigeration system ? 3+3=6
- (a) How does the increase in condenser temperature affect COP of vapour compression refrigeration system? Also explain the influence of evaporator temperature on COP.

- 13. (a) What is the life-time of a typical solar power plant?
 - (b) What is the hydraulic balance of the solar field? 3+3=6
- 14. (a) How much electricity can one wind turbine generate?
 - (b) What are the economic benefits of wind. generated energy? 3+3=6
- 15. (a) What is latent heat? Where is it absorbed and where is it released?
 - (b) What percentage of incoming solar radiation is absorbed by the earth's surface? 4+2=6

GROUP - B

40×2=80

Answer all questions.

Each question is having four options. Select the correct option and write in your answer script.

- 16. The earth's atmosphere consists largely which of the following gases ?
 - (a) Oxygen and carbon-dioxide
 - (b) Nitrogen and carbon-dioxide
 - (c) Nitrogen and oxygen
 - (d) Oxygen and water vapour

10/TR/TES/M-II/V(B)/13

(4)

12 hours of night on

(c) Either equinox

(d) Both aphelion and perihelion

 The earth, maintaining a significantly cooler surface temperature than the sun emits

- (a) Ultraviolet radiation
- (b) Shortwave infrared radiation
- (c) Longwave radiation
- (d) Visible light

 Scattered radiation moving in all directions through the atmosphere is known as

- (a) diffuse radiation
- (b) diffuse reflection
- (c) direct radiation
- (d) refracted radiation

10/TR/TES/M-II/V(B)/13

(5)

20. Which of the following is the example of high
altitude cloud ?
(a) Cirrus T
(b) Cumulus
(c) Stratus
(d) Stratocumulus
21. Wind speed is measured using an instrument called
(a) Barometer
(b) Wind vane
(c) Speedometer
(d) Anemometer
22. Liquid-suction heat-exchanger is used in vapor compression refrigeration system to
(a) improve COP of the cycle
(b) avoid useless superheating in pipes
(c) to reduce heat rejection in condenser
(d) None of the above
10/TR/TES/M-II/V(B)/13 (6)

- Sub-cooling is a process of cooling the refrigerant in vapour compression refrigeration system
 - (a) after compression
 - (b) before compression
 - (c) before throttling
 - (d) None of the above
- 24. In vapour compression refrigeration system the following data is available. Enthalpy of refrigerant at suction to compressor = 585 kJ/kg at discharge from compressor = 610 kJ/kg and heat rejected to cooling water = 5 kJ/kg. The work of compressor per kg is
 - (a) 25 kJ/kg
 - (b) 20 kJ/kg
 - (c) 30 kJ/kg
 - (d) None of the above

- 25. For high speed planes cruising at Mach number of 2.5 and above. The aircraft refrigeration system recommended is
 - (a) Simple evaporative type
 - (b) Boot-strap type
 - (c) Regenerative type
 - (d) Boot-strap evaporative type

10/TR/TES/M-II/V(B)/13

(7)

	system as compared to open air range of temperature using Bell- m gives
(a) higher power	er / ton of refrigeration
(b) lower power	/ ton of refrigeration
(c) same power	/ ton of refrigeration
(d) unpredictable	results.
	cycle has a COP of 4. The ratio
(a) 1.5 (b) 2	(c) 1.25 (d) 2.5
in the cycle are (a) Non-flow only (b) Steady flow of (c) Non-flow or steady (d) Transient flow 29. A Carnot refrigerat	or operates between 300.3°K
as work input is	tion of cooling effect required
(a) 20%	(b) 10%
(c) 50%	(d) None of these
10/TR/TES/M-II/V(B)/13	(8)
	The second secon

30.	The refrigerant R-22 stands for				
¥	(a) CFCL ₃		(b) CF ₂ C	L_2	
	(c) CF ₃ CL		(d) CHF ₃	CL	1
31.	For fixed pressur compressor work is the		atio, the	isentropic	1000
	(a) $R - 717$		(b) R –	11	
	(c) R - 22		(d) R –	12	
**	High boiling point suited for (a) Reciprocating condition (b) Centrifugal composition (c) Small screw type (d) For all the above In vapour compression	resson comp	sors sors pressors		
55.	following data are av	allab	ie:		
	Heat rejected in cond in compressor = 10 H	lenser	then COP	v, work-done is	100
	(a) 6.5	(b)	5.2		ないない
	(c) 4·5	(d)	None of		
10/	TR/TES/M-II/V(B)/13		(9)	[Turn over	The state of the

34.	In a domestic vapour compression refrigerator, the refrigerant used is						
	(a)	CO2			(b)	Freon - 12	2
	(c)	Ammo	onia		(d)	All the ab	oove
35.			c windo		ir co	nditioner ca	apacity
	(a)	1 ton			(b)	0.1 tou	
	(c)	5 ton			(d)	10 ton	
36.		1		consumpt for petro		of diesel en gine is	gine as
· Comme	(a)	higher					
, .	(b)	lower	36				
,	(c)	same	for same	e output			
	(d)	same	for sam	e speed			
37.	In i		roke cyc	ele diese	l eng	gine, during	g suction
	(a)	only a	ir is su	cked in	*		
	(b)	only f	fuel is s	ucked in	n		
	(c) mixture of fuel and air is sucked in						
	(d)	None	of the	above			
10/7	rr/r	TEC/M.	II/V/RV	12			

38.	Relative efficiency	fuel-air of spark	ratio ignit	for	maximum engine may	thermal be
	(a) 0.8					

(u) 0.8

(b) 0.6

(c) 1.2

(d) 1.5

39. Standard firing order for 4 cylinder petrol engine is

(a)
$$1-2-3-4$$

(b)
$$1-4-3-2$$

(c)
$$1 - 3 - 2 - 4$$

(d)
$$1-3-4-2$$

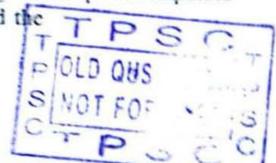
40. In petrol engine the knocking tendency will increase when

- (a) speed is increased
- (b) speed is decreased
- (c) fuel-air ratio is made rich
- (d) fuel-air ratio is made lean

41. The knocking tendency in compression ignition engines increase with

- (a) increase of compression ratio
- (b) decrease of compression ratio
- (c) increasing the temperature of inlet air
- (d) increasing the cooling water temperature

10/TR/TES/M-II/V(B)/13


(11)

42.	Cetane number of the fi	uel us is in	ed commercially for the range
	(a) 40 to 45		60 to 70
	(c) 60 to 80	(d) 8	30 to 90
43.	The maximum pressure end of compression in p	of ai	r fuel mixture at the engines varies from
			30 - 100 kg/cm ²
	(c) $6 - 10 \text{ kg/cm}^2$	(d)	100 - 1000 kg/cm ²
44.	The type of friction automotive engine is	genei	rally present in an
	(a) Viscous friction		
1	(b) Greasy friction		
	(c) Dry friction		
	(d) None of the above		
45.	The combustion process	s in d	liesel engine is
	(a) Constant pressure p	roces	SS
((b) Isothermal process		
((c) Constant volume pr	roces	S
	(d) Adiabatic process		
10/TI	R/TES/M-II/V(B)/13	(12)

46.	Two stroke engine is prefer	red for small vehicles
	(a) fuel communition is low	MF
	(b) shock and vibration are	
	(c) its size is small	
	(d) it is easy to control	
47.	The air volume in the cylin B.D.C divided by the clear	der with the piston at
		SERVE ADMITTAL DE CHENCAL
	(a) compression ratio	TPSC.
	(b) piston displacement	POLD ON PAT
	(c) cylinder ratio	
	(d) None of the above	S NOT
48.	Piston compression rings a	er manufactured by
	(a) Aluminium	(b) Cast iron
	(c) Steel	(d) Bronzz
49.	The synchronizing device usystem uses	med in the transmission
	(a) come braking surfaces	
	(b) flat braking surfaces	
	(c) synchronizing pins	
	(d) None of these	
10/	TR/TES/M-E/V(B)/13	(13) [Turn over

50. The device that product the power train is called	es different gear ratios in
(a) Differential	
(b) Transmission	
(c) Speed Changer	
(d) None of these	
51. The number of planetary transmission system is	gear sets in a hydromatic
(a) Two (t) Three
(a) Two (b) (c) Four (c)	l) Five
52. The most widely used b	rakes are operated
(a) Electrically	
(b) Hydraulically	
(c) By air pressure	
(d) By vacuum	
53. In the air brake, the air	pressure is supplied by
(a) Engine manifold	
(b) A compressor	
(c) The diaphragm valve	:
(d) None of these	
0/TR/TES/M-II/V(B)/13	(14)

- 54. The crankshafts are usually forged to get
 - (a) Minimum friction effort
 - (b) A good mechanical design
 - (c) Good grain structure
 - (d) Improved corrosion structure
- 55. The device for smoothing out the power impulses from the engine is called the
 - (a) Flywheel
 - (b) Camshaft
 - (c) Crankshaft
 - (d) Clutch

GROUP - C

5×6=30

Answer all questions.

Each question carries 6 (six) marks.

56. In a Bell-Coleman refrigeration plant, the air is drawn from cold chamber at 1 bar and 10°C and compressed to 5 bar. The same is cooled to 25°C in the cooler before expanding in the expansion cylinder to cold chamber pressure of 1 bar.

Determine the theoretical COP of the plant and the theoretical refrigeration effect/kg of air. The compression and expansion be assumed isentropic.

10/TR/TES/M-II/V(B)/13

(15)

- 57. Compare the quantity of cooling water required for a 100 KW petrol and diesel engine in which the water is raised in temperature by 30°C in passing through the jackets. In petrol engine the percentage of energy going to coolant is 30% and in diesel engine 26%. The efficiency of petrol engine is 26% and diesel engine 31%.
- 58. A refrigeration system operates on the reversed Carnot cycle. The higher temperature of the refrigerant in the system is 40°C and the lower temperature is -20°C. The capacity is to be 10 TR. Determine COP and power required of the system.
- 59. In an absorption type refrigeration system heating in generator, refrigeration in evaporator and cooling by cooling water in condenser take place at 95°C, -5°C and 30°C. Determine the maximum COP of the system.
- 60. A reversed Carnot cycle working on heat pump is delivering 40000 kJ/min to heat the conditioned space and maintaining it at 25°C when the outside atmospheric air temperature is 15°C. Determine the heat drawn in or pumped into the conditioned space from atmospheric air and the power required to operate the cycle.